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Abstract
We study the problem of decomposing a multivariate probability distribution p(v) defined over a
set of random variables V = {V1, . . . , Vn} into a product of factors defined over disjoint subsets
{VF1 , . . . ,VFm}. We show that the decomposition of V into irreducible disjoint factors forms a
unique partition, which corresponds to the connected components of a Bayesian or Markov net-
work, given that it is faithful to p. Finally, we provide three generic procedures to identify these
factors withO(n2) pairwise conditional independence tests (Vi⊥⊥Vj |Z) under much less restrictive
assumptions: 1) p supports the Intersection property; ii) p supports the Composition property; iii)
no assumption at all.
Keywords: conditional independence; probability distribution factorization; graphoids.

1. Introduction

The whole point of modeling a multivariate probability distribution p with a probabilistic graphi-
cal model, namely a Bayesian or a Markov network, is to encode independence relations into the
graphical structure G, thereby factorizing the joint probability distribution into a product of potential
functions,

p(v) =
m∏
i=1

Φi(vi).

Such a factorization acts as a structural constraint on the expression of p, which reduces the
number of free parameters in the model and facilitates both the learning and inference tasks, i.e.
estimating p from a set of data samples, and answering probabilistic queries such as arg maxv p(v).

The fundamental problem that we wish to address in this paper involves finding a factorization
of p into potential functions defined over minimal disjoint subsets, called irreducible disjoint factors
(IDF as a shorthand). Such a factorization represents a strong structural constraint, and simplifies
greatly the expression of p. For example, given two disjoint factors V1 and V2, the task of ob-
taining arg maxv p(v) can be decomposed into two independent problems arg maxv1

p(v1) and
arg maxv2

p(v2). Finding a set of disjoint factors is, for instance, an essential task in Sum-Product
network (SPN) structure learning (Gens and Domingos, 2013), where product nodes correspond
exactly to a product between disjoint factors, i.e. p(v1)×p(v2). Also, it was shown in (Gasse et al.,
2015; Bielza et al., 2011) that identifying disjoint factors in a conditional distribution p(y|x) can
effectively improve the maximum-a-posteriori estimation arg maxy p(y|x) in multi-label classifi-
cation.

In Section 2 we define our notations and introduce the concept of irreducible disjoint factors
as well as some basic properties of conditional independence on which our theoretical results will
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heavily rely. In Section 3 we show that irreducible disjoint factors necessarily form a unique par-
tition, which relates to connected components in classical probabilistic graphical models. In Sec-
tion 4, we establish several theoretical results to characterize the irreducible disjoint factors with
pairwise conditional independence tests given several assumptions about p, namely the Intersection
and Composition assumption, and then without any assumption. Each of these results establishes a
quadratic generic procedure, which can be instantiated with only O(n2) statistical tests of indepen-
dence. Finally, we conclude in Section 5.

2. Basic concepts

In this paper, upper-case letters in italics denote random variables (e.g. X,Y ) and lower-case letters
in italics denote their values (e.g. x, y). Likewise, upper-case bold letters denote random variable
sets (e.g. X,Y,Z) and lower-case bold letters denote their values (e.g. x,y, z). In the following
we will consider only the multi-variate random variable V = {V1, . . . , Vn} and its subsets. To keep
the notation uncluttered, we use p(v) to denote p(V = v) the joint distribution of V. We recall the
definition of conditional independence,

Definition 1 X is conditionally independent of Y given Z, denoted X⊥⊥Y | Z, when X,Y,Z Ď

V are disjoint subsets of random variables such that for every value of x,y, z the following holds:

p(x,y, z)p(z) = p(x, z)p(y, z).1

We will assume the reader is familiar with the concept of separation in probabilistic graphical
models, namely d-separation in directed acyclic graphs (DAGs) for Bayesian networks, and u-
separation in undirected graphs (UGs) for Markov networks. These can be found in most books
about probabilistic graphical models, e.g. Pearl (1989); Studeny (2005); Koller and Friedman
(2009).

2.1 Disjoint factorization

We shall now introduce the concept of disjoint factors of random variables that will play a pivotal
role in the factorization of the distribution p(v).

Definition 2 A disjoint factor of random variables is a subset VF Ď V such that VF ⊥⊥V \VF .
Additionally, an irreducible disjoint factor is non-empty and has no other non-empty disjoint factor
as proper subset.

As we will show next, irreducible disjoint factors necessarily form a partition of V, which we
denote FI . The key idea is then to decompose the joint distribution of the variables into a product
of marginal distributions,

p(v) =
∏

VF PFI

p(vF ).

This paper aims to obtain theoretical results for the characterization of the irreducible disjoint factors
with only pairwise conditional independence relations in the form Vi⊥⊥Vj | Z.

1. Note that most definitions from the literature present the condition p(x,y|z) = p(x|z)p(y|z), which rely on the
positivity condition p(z) > 0.
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2.2 Conditional independence properties

Consider four mutually disjoint random variables, W, X, Y and Z, and p the underlying probability
distribution. As shown in (Dawid, 1979; Spohn, 1980), the properties of Symmetry, Decomposition,
Weak Union and Contraction hold for any p, that is

X⊥⊥Y | Z ⇐⇒ Y⊥⊥X | Z (Symmetry),

X⊥⊥YYW | Z =⇒ X⊥⊥Y | Z (Decomposition),

X⊥⊥YYW | Z =⇒ X⊥⊥Y | ZYW (Weak Union),

X⊥⊥Y | Z ∧ X⊥⊥W | ZYY =⇒ X⊥⊥YYW | Z (Contraction).

Any independence model that respects these four properties is called a semi-graphoid (Pearl and
Verma, 1987). A fifth property holds in strictly positive distributions (p > 0), i.e. the Intersection
property

X⊥⊥Y | ZYW ∧ X⊥⊥W | ZYY =⇒ X⊥⊥YYW | Z (Intersection).

Any independence model that respects these five properties is called a graphoid. The term
"graphoid" was proposed by Pearl and Paz (1986) who noticed that these properties had striking
similarities with vertex separation in graphs. Finally, a sixth property will be of particular interest
in this work, that is the Composition property

X⊥⊥Y | Z ∧ X⊥⊥W | Z =⇒ X⊥⊥YYW | Z (Composition).

The composition property holds in particular probability distributions, such as regular multi-
variate Gaussian distributions. Any independence model that respects these six properties is called
a compositional graphoid (Sadeghi and Lauritzen, 2014). As shown in (Sadeghi and Lauritzen,
2015), independence models induced by classic probabilistic graphical models are compositional
graphoids.

3. Problem analysis

Let us now develop further the notion of irreducible disjoint factors, and derive a first general graph-
ical characterization. All proofs of the Theorems and Lemmas presented hereinafter are deferred to
the Appendix.

3.1 Disjoint factors algebraic structure

We first show that disjoint factors can be characterized as an algebraic structure satisfying certain
axioms. Let F denote the set of all disjoint factors (DFs for short) defined over V, and FI Ă F
the set of all irreducible disjoint factors (IDFs for short). It is easily shown that {V, ∅} Ď F . More
specifically, F can be ordered via subset inclusion to obtain a lattice bounded by V itself and the
null set, while FI forms a partition of V.

Theorem 3 If VFi ,VFj P F , then VFi Y VFj P F , VFi X VFj P F , and VFi \ VFj P F .
Moreover, V breaks down into a unique partition of irreducible components, FI .
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3.2 Graphical characterization

Irreducible disjoint factors will be conveniently represented as connected components in a graph, as
we will see. Let us first introduce an important intermediary result.

Lemma 4 Two distinct variables Vi and Vj belong to the same irreducible disjoint factor if there
exists Z Ď V \ {Vi, Vj} such that Vi⊥6⊥Vj | Z.

Note that the converse is not true, so Lemma 4 does not provide a complete characterization of
irreducible disjoint factors. The following example illustrates that point.

Example 1 Consider V = {V1, V2, V3}, with V3 a quaternary variable in {00, 01, 10, 11} and
V1, V2 two binary variables respectively equal to the first and the second digit of V3. Then, we have
that V1⊥⊥V2 and V1⊥⊥V2 | V3, and yet V1 and V2 belong to the same IDF {V1, V2, V3} due to
V1⊥6⊥V3 and V2⊥6⊥V3.

We now expand on Lemma 4 to propose a complete characterization of the irreducible disjoint
factors using graph properties.

Theorem 5 Let H be an undirected graph whose nodes correspond to the random variables in V,
in which two nodes Vi and Vj are adjacent iff there exists Z Ď V \ {Vi, Vj} such that Vi⊥6⊥Vj | Z.
Then, each connected component inH is an IDF.

Theorem 5 offers an elegant graphical approach to characterize the IDFs, by mere inspection of
the connected components in a graph. The problem of identifying all these connected components
can be solved efficiently using a breadth-first search algorithm. Despite the desirable simplicity of
this graphical characterization, deciding upon whether ∃Z Ď V \ {Vi, Vj} such that Vi⊥6⊥Vj | Z
remains a challenging combinatorial problem, an exhaustive search for Z being computationally
infeasible even for moderate amounts of variables. Moreover, a second issue is that performing a
statistical test of independence conditioned on a large Z can become problematic; in the discrete
case the sample size required for high-confidence grows exponentially in the size of the condition-
ing set. We show next that it is possible to overcome these limitations by considering restrictive
assumptions regarding p.

3.3 IDFs and PGM structures

Note that, due to the d-separation criterion for DAGs and the u-separation criterion for UGs, it is
possible to read off the IDFs directly from a Bayesian network or Markov network structure, given
that it is faithful to p.

Corollary 6 Let G be a Bayesian or Markov network structure that is faithful to p. Then, two
variables Vi and Vj belong to the same IDF iff there is a path between them in G.

Corollary 6 bridges the gap between the notion of irreducible disjoint factors and classical proba-
bilistic graphical models. Still, the problem of structure learning for Bayesian and Markov networks
is known to be NP-hard in general (Chickering et al., 2004; Karger and Srebro, 2001), and we have
no guarantee that the probability distribution underlying the data is faithful to a Bayesian network
or a Markov network structure. In the next section we consider practical procedures inspired from
constraint-based structure learning algorithms, which allow us to extract the IDFs without relying
on a particular PGM structure.
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4. Generic procedures

In this section, we address the problem of identifying the irreducible disjoint factors from pairwise
conditional independence tests. Finding a sound and efficient algorithmic procedure for general
distributions is not completely trivial as we shall see, so we may consider several (reasonable) as-
sumptions about the underlying distribution p, namely the Intersection and Composition properties.

4.1 Under the Intersection assumption

Let us present first a simplified characterization of the IDFs for distributions satisfying the Intersec-
tion property.

Theorem 7 Let K be an undirected graph whose nodes correspond to the random variables in
V, in which two nodes Vi and Vj are adjacent iff Vi⊥6⊥Yj | V \ {Vi, Vj}. Then, each connected
component in K is an IDF if p supports the Intersection property.

The graph, K, is referred to as a concentration graph in the statistical literature (Cox and Wer-
muth, 1993). Theorem 7 is appealing compared to Theorem 5, as it greatly reduces computational
expense incurred in obtaining the irreducible disjoint factors, with only a quadratic number of con-
ditional independence tests. The graphKmay not be identical the graphH from Theorem 5, though
under the Intersection assumption their connected components are the same. Still, the size of the
conditioning set V \ {Vi, Vj} is problematic for large variable sets, as it greatly reduces the con-
fidence of a statistical test with limited samples. However, under the Intersection assumption the
problem of performing that statistical test can be translated into a Markov boundary discovery prob-
lem, which can be solved with any off-the-shelf minimal feature subset selection algorithm.

Lemma 8 Consider Vi, Vj P V two distinct variables, and Mi a Markov boundary of Vi in V.
Then, Vj 6P Mi implies Vi⊥⊥Vj | V \ {Vi, Vj}, and the converse holds when p supports the Inter-
section property.

Note that the Intersection assumption might be too restrictive in many practical scenarios. In
fact, many real-life distributions (e.g. engineering systems such as digital circuits and engines that
contain deterministic components) violate the Intersection property. As noted in (Statnikov et al.,
2013), high-throughput molecular data, known as the “multiplicity” of molecular signatures (i.e.,
different gene/biomarker sets perform equally well in terms of predictive accuracy of phenotypes)
also suggests existence of multiple Markov boundaries, which violates Intersection. It is usually
unknown to what degree the Intersection assumption holds in distributions encountered in practice.
The following example provides a particular case where the Intersection property does not hold.

Example 2 Consider V = {V1, V2, V3, V4} four binary random variables such that v1 = v2, v3 =
v4 and p(V2 = V3) = α, 0.5 < α < 1. Clearly here p is not strictly positive and the Intersection
property does not hold. If we apply Theorem 7 along with Lemma 8 then we have M1 = {V2},
M2 = {V1}, M3 = {V4} and M4 = {V3}, which results in two connected components {V1, V2}
and {V3, V4} in K. These are clearly not disjoint factors since {V1, V2}⊥6⊥{V3, V4}.
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4.2 Under the Composition assumption

Second, we consider an even simpler characterization of the IDFs for distributions satisfying the
Composition property.

Theorem 9 Let L be an undirected graph whose nodes correspond to the random variables in V,
in which two nodes Vi and Vj are adjacent iff Vi⊥6⊥Vj . Then, each connected component in L is an
IDF if p supports the Composition property.

The graph, L, is referred to as a covariance graph in the statistical literature (Cox and Wermuth,
1993). Theorem 9 is very similar to Theorem 7, with again a quadratic number of conditional
independence tests involved. The graphLmay not be identical the graphH from Theorem 5, though
under the Composition assumption their connected components are the same. Moreover, a desirable
property of this characterization is that the conditioning set vanishes, which ensures high confidence
when performing a statistical test from finite samples. Still, it is usually unknown to what degree the
Composition assumption holds in distributions encountered in practice. Some special distributions
are known to satisfy the Composition property, for example multivariate Gaussian distributions
(Studeny, 2005, Corollary 2.4) and the symmetric binary distributions used in (Wermuth et al.,
2009). The following example provides a case where the Composition property does not hold.

Example 3 Consider V = {V1, V2, V3} three binary variables such that V2 and V3 are independent
and uniformly distributed, and p(V1 = V2 ⊕ V3) = α, 0.5 < α < 1 (⊕ denotes the exclusive OR
operator). If we apply Theorem 9 we have that every pair of variables is mutually independent,
which results in three connected components {V1}, {V2} and {V3} in L. These are clearly not
disjoint factors since {V1}⊥6⊥{V2, V3}, {V2}⊥6⊥{V3, V1} and {V3}⊥6⊥{V1, V2}.

4.3 For any probability distribution

Finally, we present a less trivial characterization of the IDFs that also loosens the computational
burden by orders of magnitude compared to Theorem 5, and yet does not require any assumption
about p.

Theorem 10 Consider < a strict total order of V. Let M be an undirected graph whose nodes
correspond to the random variables in V, obtained from the following procedure:

1: M← (V, ∅) (empty graph)
2: for all Vi P V do
3: Vi

ind ← ∅
4: for all Vj P (V |V > Vi) (processed in < order) do
5: if Vi⊥⊥Vj | {V |V < Vi}Y Vi

ind then
6: Vi

ind ← Vi
ind Y {Vj}

7: else
8: Insert a new edge (i, j) inM

Then, each connected component inM is an IDF.

Here again, the number of conditional independence tests required in Theorem 10 is quadratic
in the number of variables. Compared to the previous results under the Intersection and the Compo-
sition properties, this new characterization has the desirable advantage of requiring no assumption
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about the underlying distribution p. However, it suffers from two limitations: i) the conditioning set
at line 5 ranges from ∅ in the first iteration to V \ {Vi, Vj} in the last iteration, which is problematic
in high-dimensional data; and ii) the whole procedure is prone to a propagation of error, since each
iteration depends on the result of the previous tests to constitute the Vi

ind set. Also, the procedure
can not be fully run in parallel, contrary to the procedures in Theorems 7 and 9.

5. Discussion

We presented three procedures based on pairwise conditional independence tests to identify the
irreducible disjoint factors of a multivariate probability distribution p(v). These procedures require
only a quadratic number of independence tests, between each pair of variables Vi, Vj P V. The
first one is correct under the assumption that p supports the Intersection property, and involves
conditional independence tests in the form Vi⊥⊥Vj | V \ {Vi, Vj}. The second one is correct under
the assumption that p supports the Composition property, and involves conditional independence
tests in the form Vi⊥⊥Vj | ∅. Finally, the third procedure we propose is correct for any probability
distribution p, and involves conditional independence tests in the form Vi⊥⊥Vj | Z, where Z is
updated iteratively from the outcome of the previous tests, and ranges from ∅ to V \ {Vi, Vj}.

While these three procedures are mathematically sound, their effective implementation will
necessarily rely on fallible statistical tests in order to decide upon {X}⊥⊥{Y } | Z, that is, the
rejection or acceptance of the null hypothesis of independence. Typically, these are based on either
a G or a χ2 test when the data set is discrete and a Fisher’s Z test when it is continuous. These tests
are likely to fail to decide on conditional dependence when the expected counts in the contingency
table are small. In fact, the decision of accepting or rejecting the null hypothesis depends implicitly
upon the degree of freedom of the test, which increases exponentially with the number of variables
in the conditional set. The larger the size of the conditioning set, the less accurate are the conditional
probability estimates and hence the less reliable are the independence tests. Practical solutions to
deal with this problem typically involve permutation-based tests to estimate the effective degrees
of freedom (Tsamardinos and Borboudakis, 2010), kernel-based tests (Zhang et al., 2011), or a
combination of both (Doran et al., 2014).

Among the three generic procedures presented in Theorems 7, 9 and 10, the second procedure
(under Composition) is the more appealing, in our view, since it relies on low-order conditional in-
dependence test, which are more robust in practice. Moreover, the Composition property is usually
considered as a reasonable assumption, and often tacitly assumed. For example, linear models rely
on the Composition property. In the context of feature subset selection, it is often argued that for-
ward selection is computationally more efficient than backward elimination (Guyon and Elisseeff,
2003). In fact such a statement tacitly supposes that the Composition property holds (Peña et al.,
2007). Interestingly, the procedure used for SPN structure learning in (Gens and Domingos, 2013)
to "partition V into approximately independent subsets Vj" can be seen as a direct instantiation
of Theorem 9 with a G test of pairwise independence. We proved therefore that this particular
procedure is in fact correct and optimal (i.e., it yields independent and irreducible subsets) when
p supports the Composition property. Finally, the problem of decomposing p into irreducible dis-
joint factors seems closely related to the so-called "all-relevant" feature subset selection problem
discussed in (Rudnicki et al., 2015; Nilsson et al., 2007), where a variable Vi is said to be relevant to
another variable Vj iff there exists Z Ď V \{Vi, Vj} such that Vi⊥6⊥Vj | Z. The graph in Theorem 5
provides a straightforward solution to this problem, therefore it may be interesting to investigate fur-
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ther how the graphs in Theorems 7, 9 and 10 may solve the "all-relevant" feature selection problem.
This is left for future work.
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Appendix

For the sake of conciseness, the obvious Symmetry property (i.e., X⊥⊥Y | Z equivalent to Y⊥⊥X |
Z) will be used implicitly in the proofs.
Proof [Proof of Theorem 3] First, we prove that VFi Y VFj P F . From the DF assumption for
VFi and VFj we have VFi ⊥⊥V \VFi and VFj ⊥⊥V \VFj . Using the Weak Union property we
obtain that VFi ⊥⊥V \ (VFi Y VFj ) | VFj \VFi , and similarly with the Decomposition property
we get VFj \ VFi ⊥⊥V \ (VFi Y VFj ). We may now apply the Contraction property to show
that VFi Y VFj ⊥⊥V \ (VFi Y VFj ). Therefore, VFi Y VFj is a DF by definition. Second, we
prove that VFi XVFj P F . From the DF assumption for VFi and VFj we have VFi ⊥⊥V\VFi and
VFj ⊥⊥V\VFj . Using the Weak Union property we obtain VFiXVFj ⊥⊥(V\(VFiYVFj ))Y(VFj\
VFi) | VFi \VFj , and similarly with the Decomposition property we get VFi XVFj ⊥⊥VFi \VFj .
We may now apply the Contraction property to show that VFi X VFj ⊥⊥V \ (VFi X VFj ). There-
fore, VFi X VFj is a DF by definition. Third, we prove that VFi \ VFj P F . From the DF
assumption for VFi and VFj we have VFi ⊥⊥V \ VFi and VFj ⊥⊥V \ VFj . Using the Weak
Union property we obtain VFi \ VFj ⊥⊥V \ VFi | VFj , and similarly with the Decomposition
property we get VFj ⊥⊥VFi \ VFj . We may now apply the Contraction property to show that
VFi \VFj ⊥⊥V \ (VFi \VFj ). Therefore, VFi \VFj is a DF by definition. Finally, we prove that
FI forms a partition of V. Consider a non-empty DF VFi P F . Then either VFi is an IDF, or one of
its proper non-empty subsets VFj Ă VFi is an IDF and the remaining set VFi \VFj is a non-empty
DF. By applying the same reasoning recursively, the non-empty DF V P F breaks down into an
irreducible partition of IDFs. Now, consider two distinct IDFs VFi ,VFj P FI , then VFi X VFj is
a DF, which is necessarily empty due to the IDF assumption for VFi or VFj . As a result all IDFs
are mutually disjoint, and FI forms a unique partition of V.

Proof [Proof of Lemma 4] By contradiction, suppose Vi and Vj do not belong to the same IDF, and
let VFi denote the irreducible disjoint factor to which Yi belongs. From the DF definition we have
VFi ⊥⊥V \VFi . Let Z denote any arbitrary subset of V \ {Vi, Vj}, we can apply the Weak Union
property to obtain VFi \Z⊥⊥V \ (VFi Y Z) | Z. Then, from the Decomposition property we have
{Vi}⊥⊥{Vj} | Z. This is true for every such Z subset, which concludes the proof.

We now introduce Lemma 11 which will prove useful to our subsequent demonstrations.
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Lemma 11 Let VF be an IDF. Then, for every nonempty proper subset Z of VF , we have Z⊥6⊥VF \
Z | V \VF .

Proof [Proof of Lemma 11] By contradiction, suppose such a Z exists with Z⊥⊥VF \Z | V \VF .
From the DF assumption of VF , we also have that VF ⊥⊥V\VF , and therefore Z⊥⊥V\VF due to
the Decomposition property. We may now apply the Contraction property on these two statements
to obtain Z⊥⊥V \ Z which contradicts the IDF assumption for VF . This concludes the proof.

Proof [Proof of Theorem 5] If a path exists between Vi and Vj in H then owing to Lemma 4 all
pairs of successive variables in the path are in the same IDF, and by transitivity Vi and Vj necessar-
ily belong to the same IDF. We may now prove the converse. Suppose that Vi and Vj belong to the
same IDF, denoted VF . Consider {X,Y} a partition of V such that Vi P X and Vj P Y. Then,
owing to Lemma 11, we have that XXVF ⊥6⊥Y XVF | V \VF . Using the Weak Union property,
we obtain X⊥6⊥Y. Consider X1 an arbitrary variable from X. Using the Contraction property, we
have that either {X1}⊥6⊥Y or X \ {X1}⊥6⊥Y | {X1}. Consider X2 another arbitrary variable from
X\{X1}, we can apply the Contraction property again on the second expression to obtain that either
{X2}⊥6⊥Y | {X1} or X\{X1, X2}⊥6⊥Y | {X1, X2}. If we proceed recursively, we will necessarily
find a variableXk P X such that {Xk}⊥6⊥Y | {X1, . . . , Xk−1}. Likewise, we can proceed along the
same line to exhibit a variable Yl P Y such that {Xk}⊥6⊥{Yl} | {X1, . . . , Xk−1}Y {Y1, . . . , Yl−1}.
In other words, for every partition {X,Y} of V such that Vi P X and Vj P Y, there exists at
least one variable X in X, one variable Y in Y and one subset Z Ď V \ {X,Y }, such that
{X}⊥6⊥{Y } | Z. So there necessarily exists a path between Vi and Vj in H. This concludes the
proof.

Proof [Proof of Corollary 6] From the d-separation criterion in DAGs (resp. the u-separation cri-
terion in UGs), if G is faithful to p, then {Vi}⊥6⊥{Vj} | Z iff there is an open path between Vi and
Vj given Z. Since every path can be made open by conditioning on its collider nodes (resp. on the
empty set), then for every pair of distinct variables Vi, Vj P V connected by a path, there exists a
subset Z Ď V \ {Vi, Vj} such that Vi⊥6⊥Vj | Z. Conversely, if there exists no path between Vi and
Vj , then {Vi}⊥⊥{Vj} | Z for every such a Z subset. This concludes the proof.

Proof [Proof of Theorem 7] If a path exists between Vi and Vj inK then owing to Lemma 4 all pairs
of successive variables in the path are in the same IDF, and by transitivity Vi and Vj necessarily be-
long to the same IDF. We may now prove the converse. Suppose that Vi and Vj belong to the same
IDF, denoted VF . Consider {X,Y} a partition of V such that Vi P X and Vj P Y. Then, owing to
Lemma 11, we have that XXVF ⊥6⊥YXVF | V \VF . Using the Weak Union property, we obtain
X⊥6⊥Y. Consider X1 an arbitrary variable from X. Using the Intersection property, we have that
either {X1}⊥6⊥Y | X \ {X1} or X \ {X1}⊥6⊥Y | {X1}. Consider X2 another arbitrary variable
from X \ {X1}, we can apply the Intersection property again on the second expression to obtain
that either {X2}⊥6⊥Y | X \ {X2} or X \ {X1, X2}⊥6⊥Y | {X1, X2}. If we proceed recursively,
we will necessarily find a variable Xk P X such that {Xk}⊥6⊥Y | X \ {Xk}. Likewise, we can
proceed along the same line to exhibit a variable Yl P Y such that {Xk}⊥6⊥{Yl} | V \ {Xk, Yl}. In
other words, for every partition {X,Y} of V such that Vi P X and Vj P Y, there exists at least one
variable X in X and one variable Y in Y such that {X}⊥6⊥{Y } | V \ {X,Y }. So there necessarily
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exists a path between Vi and Vj in K. This concludes the proof.

Proof [Proof of Lemma 8] First, if {Vi}⊥6⊥{Vj} | V \ {Vi, Vj} then from the Weak Union property
we have that {Vi}⊥6⊥V \ ({Vi} Y Z) | Z for every Z Ď V \ {Vi, Vj}. In other words, there ex-
ists no Markov blanket (neither Markov boundary) of Vi in V which does not contain Vj . Second,
we prove the converse. Suppose the Markov boundary Mi of Vi in V contains Vj , then we have
{Vi}⊥6⊥{Vj}YV\({Vi}YMi) |Mi\{Vj}. We can apply the Intersection property to obtain that ei-
ther {Vi}⊥6⊥{Vj} | V\{Vi, Vj} or {Vi}⊥6⊥V\ ({Vi}YMi) |Mi. The second statement contradicts
the Markov blanket assumption for Mi, so we necessarily have that {Vi}⊥6⊥{Vj} | V \ {Vi, Vj}.
This concludes the proof.

Proof [Proof of Theorem 9] If a path exists between Vi and Vj in L then owing to Lemma 4 all pairs
of successive variables in the path are in the same IDF, and by transitivity Vi and Vj necessarily be-
long to the same IDF. We may now prove the converse. Suppose that Vi and Vj belong to the same
IDF, denoted VF . Consider {X,Y} a partition of V such that Vi P X and Vj P Y. Then, owing to
Lemma 11, we have that XXVF ⊥6⊥YXVF | V \VF . Using the Weak Union property, we obtain
X⊥6⊥Y. Consider X1 an arbitrary variable from X. Using the Composition property, we have that
either {X1}⊥6⊥Y or X \ {X1}⊥6⊥Y. Consider X2 another arbitrary variable from X \ {X1}, we
can apply the Composition property again on the second expression to obtain that either {X2}⊥6⊥Y
or X \ {X1, X2}⊥6⊥Y. If we proceed recursively, we will necessarily find a variable Xk P X such
that {Xk}⊥6⊥Y. Likewise, we can proceed along the same line to exhibit a variable Yl P Y such
that {Xk}⊥6⊥{Yl}. In other words, for every partition {X,Y} of V such that Vi P X and Vj P Y,
there exists at least one variable X in X and one variable Y in Y such that {X}⊥6⊥{Y }. So there
necessarily exists a path between Vi and Vj in L. This concludes the proof.

Proof [Proof of Theorem 10] To keep the subsequent developments uncluttered, we consider with-
out loss of generality that the variable set V = {V1, . . . , Vn} is ordered according to <, so that
Vi < Vj ⇐⇒ i < j. Second, we denote Vi,j

ind the set Vi
ind in its intermediary state at line 5 when

Vj is being processed, while Vi
ind denotes its state at the end of the procedure. Last, we adopt the

notation {X|X > Vk} and {Y |Y > Vk} to denote respectively the sets {V |V > Vk, V P X} and
{V |V > Vk, V P Y} (with X, Y subsets of V), so that X P X and Y P Y by convention.

We start by proving that Vi and Vj are in the same IDF if Vi and Vj are connected in M. If
two variables Vp and Vq (with Vp < Vq) are adjacent inM, then there exists a set Vp,q

ind such that
{Vp}⊥6⊥{Vq} | {V |V < Vp} Y Vp,q

ind, and from Lemma 4 Vp and Vq belong to the same IDF. Now,
if a path exists between Vi and Vj inM, then all pairs of successive variables in the path are in the
same IDF, and by transitivity Vi and Vj belong to the same IDF.

To show the converse, we shall prove by contradiction that if Vi and Vj belong to the same IDF,
then there exists a path between Vi and Vj inM. Suppose there is no such path, then there exists a
partition {X,Y} of V such that Vi P X, Vj P Y, and every variable in X is non-adjacent to every
variable in Y. Equivalently, for every variable Vk P V we have {X|X > Vk} Ď Vk

ind if Vk P Y,
and {Y |Y > Vk} Ď Vk

ind if Vk P X. To proceed, we shall first prove by induction that

∀k > i, {Vi}⊥⊥Vi,k
ind | {V |V < Vi}.
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For k = i + 1, we have that Vi,k
ind = ∅ so the result holds trivially. Suppose that {Vi}⊥⊥Vi,k

ind |
{V |V < Vi} holds for some k. If {Vi}⊥⊥{Vk} | {V |V < Vi}Y Vi,k

ind, then Vi,k+1
ind = Vi,k

ind Y {Vk}
and {Vi}⊥⊥Vi,k+1

ind | {V |V < Vi} due to the Contraction property. Otherwise, Vi,k+1
ind = Vi,k

ind and
we end up with the same result. Therefore, the result holds for every k > i by induction, and setting
k = n yields {Vi}⊥⊥Vi

ind | {V |V < Vi}. Now, we prove a second result by induction:

∀k, {X|X ≥ Vk}⊥⊥{Y |Y ≥ Vk} | {V |V < Vk}.

For k = n, we have {X|X ≥ Vk} = {Y |Y ≥ Vk} = ∅ so the result holds trivially. Consider
the previous variable, Vk−1, and suppose it belongs to X, then due to our previous result we have
{Vk−1}⊥⊥Vk−1

ind | {V |V < Vk−1}. Since {Y |Y > Vk−1} Ď Vk−1
ind , we may apply the Decomposi-

tion property to obtain {Vk−1}⊥⊥{Y |Y ≥ Vk−1} | {V |V < Vk−1}. Combining that last expression
with {X|X ≥ Vk}⊥⊥{Y |Y ≥ Vk} | {V |V < Vk} yields {X|X ≥ Vk−1}⊥⊥{Y |Y ≥ Vk−1} |
{V |V < Vk−1} due to the Contraction property. The same demonstration holds if Vk−1 P Y.
Therefore, the result holds for every k by induction. Setting k = 1 in the expression above yields
X⊥⊥Y, therefore Vi and Vj belong to distinct IDFs. This concludes the proof.
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